Example 1

Find each of the values below and then justify your answer by writing the equivalent exponential

a.
$$\log_5 25 = ?$$

b.
$$\log_7 ? = 3$$

$$\log_5 25 = ?$$
 b. $\log_7 ? = 3$ c. $\log_2 \left(\frac{1}{8}\right) = ?$

A logarithm is really just an exponent, so an expression like the one in part (a), log₅ 25, is asking "What exponent can I raise the base 5 to, to get 25?" We can translate this question into an equation: $5^{?} = 25$. By phrasing it this way, the answer is more apparent: 2. This is true because $5^2 = 25$.

Part (b) can be rephrased as $7^3 = ?$. The answer is 343.

Part (c) asks "2 to what exponent gives $\frac{1}{8}$?" or $2^{?} = \frac{1}{8}$. The answer is -3 because $2^{-3} = \frac{1}{2^{3}} = \frac{1}{8}$.

3.
$$x = \log_5 30$$

5.
$$\left(\frac{1}{2}\right)^x = 64$$

7.
$$5^x = \frac{1}{125}$$

9.
$$11^3 = x$$

3.
$$5^x = 30$$

5.
$$\log_{1/2} 64 = x$$

$$7. \quad \log_5\left(\frac{1}{125}\right) = x$$

9.
$$\log_{11} x = 3$$

4.
$$4^x = 80$$

6.
$$x^3 = 343$$

8.
$$\log_x 32 = y$$

$$10. \qquad -4 = \log_x \left(\frac{1}{16}\right)$$

4.
$$\log_4 80 = x$$

6.
$$\log_x 343 = 3$$

8.
$$x^y = 32$$

10.
$$x^{-4} = \frac{1}{16}$$

13.
$$9 = \log x$$

15.
$$\left(\frac{1}{3}\right)^x = 243$$

17.
$$7^x = \frac{1}{49}$$

19.
$$\log_{11} x = 3$$

13.
$$x = 1,000,000,000$$

15.
$$x = -5$$

17.
$$x = -2$$

19.
$$x = 1,331$$

20.
$$x = -3$$
 y_{\downarrow}

14.
$$81 = 9^x$$

16.
$$6^x = 7776$$

18.
$$\log_2 32 = x$$

20.
$$\log_5\left(\frac{1}{125}\right) = x$$

14.
$$x = 2$$

16.
$$x = 5$$

18.
$$x = 5$$

v ‡